§ 86. Электронная проводимость металлов.

Прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их (§ 40). Это обстоятельство заставляет предполагать, что атомы металла при прохождении тока не перемещаются от одного участка проводника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке (1845-1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминиевый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3000000 Кл). Производя затем тщательный анализ места соприкосновения меди и алюминия, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током.

Каким же образом происходит перенос зарядов при прохождении тока через металл?

Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положительные заряды, входящие в состав каждого атома, существенно отличаются друг от друга. Положительный заряд связан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заряды – электроны, обладающие определенным зарядом и массой, почти в 2000 раз меньшей массы самого легкого атома – водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заряженный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов металла, образуя его кристаллическую решетку (см. том I).

Одним из наиболее убедительных явлений, обнаруживающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что электроны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с веществом металла. Так как при прохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электричества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе ).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолированные друг от друга полуоси , укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

196.jpg

Рис. 141. Исследование природы электрического тока в металлах

Итак, опыты показывают, что в металлах имеются свободные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упорядоченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике).

86.1. Металлический незаряженный диск приводится в быстрое вращение и, таким образом, становится «центрифугой для электронов». Между центром  и периферией диска возникает разность потенциалов (рис. 142; 1 – диск, 2 – контакты, 3 – электрометр). Каков будет знак этой разности?

197.jpg

Рис. 142. К упражнению 86.1

86.2. По серебряной проволоке с сечением 1 мм2 проходит ток силы 1 А. Вычислите среднюю скорость упорядоченного движения электронов в этой проволоке, полагая, что каждый атом серебра дает один свободный электрон. Плотность серебра равна  кг/м3, его относительная атомная масса равна 108. Постоянная Авогадро  моль-1.

86.3. Сколько электронов должно проходить через поперечное сечение провода ежесекундно, чтобы в проводе шел ток 2 А? Заряд электрона равен  Кл.

Комментарии: (0)

Пока комментариев нет, вы можете стать первым!

Sponsor

Самое читаемое

Sponsor