Автор: Петров ВаБ Дата: 06.06.2025	Не дается ни каких гарантий! Только для ознакомления! Может свободно распространятся при условии указания автора. Лицензия: СС BY-SA 4.0.
Идентификатор версии: e16ef4cd-4ca7abfa-4ca16b00-1b38bb9c-1d2fae0f-eea39e0d-bb274d89-958e72c3	

Автор не претендует на новизну и научность. Все возможные совпадения с ранее опубликованными идеями случайность! Если аналогичные идеи ранее уже были опубликованы — автор не оспаривает их приоритеты.

Простая беспарадоксальная формальная логика

ВаБ-логика

1. Основные определения

- Утверждение (Φ) любая фраза, которая может быть истинной (Π) или ложной (Π).
- **Проверочная фраза (П(Ф))** проверочная фраза для Φ , определяемая как:
 - \circ $\Pi(\Phi) \equiv \Im$ то утверждение истинно тогда и только тогда, когда Φ имеет единственное непротиворечивое значение.

2. Формальное правило:

Если утверждение Φ при проверке через $\Pi(\Phi)$ приводит к противоречию ($\Phi \neq \Pi(\Phi)$), то Φ заменяется на $\Pi(\Phi)$. Иначе — сохраняет исходное значение.

3. Формальный алгоритм:

- (1) Проверить все возможные значения Ф (И/Л)
- (2) Если ровно одно значение не приводит к противоречию → принять его
- (3) Если оба значения противоречивы → считать ложным
- (4) Если оба непротиворечивы \rightarrow сохранить исходное значение Φ
- (5) Если Φ явно декларирует свою ложность («Я лгу») \rightarrow разрешить оба варианта (И/Л) в зависимости от контекста

4. Примеры работы логики с проверочной фразой

Для удобства введем переменную **3н** - это временная переменная, используемая в алгоритме проверки.

зн ∈ { $\mathbf{И}$, $\mathbf{\Pi}$ } означает:

- **3н** = \mathbf{M} пробуем предположить, что утверждение истинно
- **3H** = Π пробуем предположить, что утверждение ложно

Проверяем:

і. Обычные несамореферентные утверждения

«Снег белый»

• зн=И: непротиворечиво *→* Истина

• зн=Л: противоречиво

• Результат: Истина

- зн=И: противоречиво
- зн=Л: непротиворечиво → Ложь
- Результат: Ложь

і. Классические парадоксы

«Это утверждение ложно»

- зн=И: приводит к противоречию
- зн=Л: непротиворечиво
- Результат: Ложь

«Это утверждение истинно»

- зн=И: непротиворечиво
- зн=Л: приводит к противоречию
- Результат: Истина

і. Контекстно-зависимые случаи

«Я сейчас лгу» (правдивое признание)

- зн=И: непротиворечиво (человек действительно лжет)
- зн=Л: противоречиво
- Результат: Истина

«Я сейчас лгу» (ложное заявление)

- зн=И: противоречиво
- зн=Л: непротиворечиво (человек говорит правду)
- Результат: Ложь

і. Взаимные парадоксы

Ф1: «Ф2 ложно», Ф2: «Ф1 истинно»

Единственная непротиворечивая комбинация:

Ф1=Ложь, Ф2=Истина

і. Многоуровневые конструкции

«Утверждение 'Это утверждение ложно' истинно»

- Внутреннее утверждение: Ложь
- Внешнее утверждение: «Ложь истинно» Ложь
- Результат: Ложь

і. Бессмысленные самореференции

«Это утверждение»

Отсутствует предикат истинности

Результат: Ложь (по умолчанию)

і. Утверждения о паттернах поведения

«Я всегда лгу» (патологический лгун)

• зн=И: противоречиво

• зн=Л: непротиворечиво

• Результат: Ложь

«Я иногда лгу» (честный человек)

• зн=И: непротиворечиво

• зн=Л: противоречиво

• Результат: Истина

Классификация результатов:

Классические утверждения - сохраняют обычное значение

Парадоксы - разрешаются через выбор единственного непротиворечивого варианта

Контекстные высказывания - оцениваются по смыслу

Взаимные ссылки - решаются системой уравнений

Некорректные формы - автоматически отвергаются

Система гарантирует:

Бинарность (только Истина/Ложь)

Конечную вычислимость

Сохранение классической логики для обычных утверждений

Однозначное разрешение парадоксов