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OTF - Total Theory of all Physics .
Sorokin V.S., Sha S.V.

I proceeded from the method of V.S. Sorokin (Advances in Physical 
Sciences, Vol. LIX , Issue 2, 1956, pp. 325-362 
https://ufn.ru/ru/articles/1956/6/c/) as presented by M.A. Aizerman, MIPT 
(Classical Mechanics, Moscow, Nauka, 1974, pp. 44 et seq.).
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Explanation

OTF is very simple. There is matter in space. She behaves as she wants. 
People want to turn its description into a scientific form. To do this, they try to 
describe the behavior of matter using mathematical formulas. But not everything 
is so simple, and we don’t know everything. Intermediate Principles and Laws are 
introduced. The fewer principles and laws in science, the better nature is 
described. This is the goal of the OTF to reduce their number to a minimum. I 
don’t completely abandon the Principles: we don’t know everything yet. I take as 
a basis Galileo’s principle of relativity, which is half physical, half mathematical, 
and asserts that the mathematical description of nature must be qualitatively 
preserved when quantitative physical parameters change.

Physics begins with the relativity of motion. If two trains are moving, it is 
not known which of them is moving and which is standing. There is also a 
principle that the equations describing motion should not change when moving 
from one frame of reference to another. This is Galileo's principle of relativity. In 
this work, such equations are sought. The simplest case of two colliding bodies at 
different speeds is taken. The speeds change and you will not get the same type of 
equations from them. But by taking some function, you can consider it in another 
frame of reference. It turns out that if the function is preserved, then its change is 
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also preserved, and the change in changes, etc. There are 6 variable speeds for 2 
particles. And there should be 6 independent changes, but there are many more 
such changes in changes, and they should not affect the solution. From these 
unnecessary patterns, the laws of physics are obtained. The laws of conservation 
of energy and momentum are obtained. For microbodies, the relativity of motion 
is also preserved and the equations of quantum mechanics are obtained. In 
thermodynamics, the relativity of motion is preserved and its laws are obtained. In 
Einstein's theory of relativity. the same And so on. In any section of physics, there 
is relativity of motion, and by applying it to the laws of this section, one can 
obtain formulas and laws.

It has been verified that these patterns are also preserved for a number of 
particles greater than 2. This is not given in the work, but you can do it yourself.

This is how the unity of command of all sections of physics is achieved.

1. Measure of movement (Sorokin V.S.)
(as presented by M.A. Aizerman, “Classical Mechanics”, Moscow, Nauka, 1974, 
p. 44 and further, the method of V.S. Sorokin, “Advances in Physical Sciences”, 
vol. LIX , issue 2, 1956, pp. 325-362 https://ufn.ru/ru/articles/1956/6/c/).

Observing the movements of bodies, people have long paid attention to the 
fact that the greater the mass and speed of a moving body, the stronger the effect 
that occurs when it collides with other bodies. For example, when a cannonball 
moves, its destructive force is greater, the greater its mass and speed; when a 
moving ball hits a stationary one, the latter acquires a greater speed, the greater the 
speed of the first ball; a meteorite reaching the Earth penetrates the ground the 
deeper, the greater the mass and speed of the meteorite. These and many other 
examples of this kind suggest the existence of a measure of mechanical motion (in 
short, a measure of motion ) and the dependence of this measure on the speed and 
mass of a moving material object.

Observing the motion of the balls before and after the collision, one can 
notice that if as a result of the collision the motion of one of the balls "decreased", 
then the motion of the second ball "increased" and even more so, the more 
significantly the motion of the first ball "decreased". It seems therefore that 
although the measure of motion of each of the balls changes during the collision, 
the sum of such measures for both balls remains unchanged, i.e. that under certain 
conditions an "exchange of motion" occurs while the measure of motion as a 
whole is preserved.

The history of mechanics is associated with long-standing disputes among 
scientists about what quantity is the measure of motion, in particular, whether the 
measure of motion is a scalar quantity or a vector. This dispute is of historical 
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interest only, but it was during this discussion that two basic characteristics of 
motion were introduced - kinetic energy and momentum, which play a central role 
in the entire construction of mechanics. Let us therefore try to more accurately 
define the intuitively introduced concept of the measure of motion and, from 
general considerations, clarify some of the properties that it should have.

We will proceed from the assumption that the measure of the motion of a 
material point is a scalar function of the mass and velocity of the point f (mi , v i), 
satisfying the following conditions:

1 o The measure of motion is additive. This requirement means that the 
measure of motion of the system f c is obtained as the sum of the measures of 
motion of all N points included in the system

f c=∑
i=1

N

f c (mi , v i).

2 o The measure of motion is invariant with respect to the rotation of the 
reference system. From this intuitively obvious requirement (which naturally 
follows from the basic assumptions about space and time) it immediately follows 
that the measure of motion should not depend on the position of the point, on the 
direction of its velocity and on time and can depend only on the modulus of the 
velocity |v i|=v i: f =f (mi , v i).

3 o The measure of motion of a closed system of material points should not 
change during temporary interactions. Interactions that last only a finite time τ and 
are not necessarily caused by direct contact of bodies are called temporary. It is 
assumed that during the time τ only the mechanical characteristics of the material 
points change - their positions and velocities, but other parameters characterizing 
their physical states - temperature, electric charge, etc. - remain unchanged. The 
concept of "temporal interaction" is a natural generalization of the concept of 
"collision". This requirement then means that the measure of motion of the entire 
closed system of material points f c , calculated before the interaction begins and 
after its end, must be the same.

Of course, the condition of preservation of the measure 3 o must be invariant 
with respect to Galilean transformations. This requirement is a direct consequence 
of Galilean relativity principle.

Let us now determine what form a scalar function has that satisfies all these 
conditions.

Let us consider a closed system consisting of two material points with 
masses m 1 and m 2 . Let the velocities of these points relative to the inertial frame 
of reference be equal v1 , v2at the moment t (before the interaction) and v '1 , v '2- at the 
moment t '=t+τ(after the interaction). If the function f (mi , v i)serves as a measure of 
motion, then by virtue of condition 3 o the equality must be satisfied

f (m1 , v1)+ f (m2 , v2)=f (m1 , v '1)+ f (m2 , v '2) ( 1)
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Let us choose a reference frame moving relative to the initial one 
translationally and uniformly with the velocity - u . This system is also inertial. 
The points under consideration have velocities in it v1+u , v2+uat the moment t and 
v '1+u , v '2+uat the moment t' . Due to Galileo's principle of relativity, the function f 
must be a measure of motion in this system as well, i.e. the equality must be 
satisfied

f (m1 , v1+u)+ f (m2 , v2+u)=f (m1 , v '1+u)+ f (m2 , v '2+u) ( 2)
Let us choose in the “old” inertial reference system a Cartesian coordinate 

system x , y , z so that the coordinates of the vector u are equal to ( u , 0, 0), i.e. let 
us assume that the “new” inertial system moves relative to the “old” one with a 
speed of -u along the x axis . Then

f (m,v+u )=f (m,v x+u , v y , v z ),
where v x , v y , v z are the coordinates of the vector v , and equality (2) takes the 
form
f (m1 , v1 x+u , v1 y , v1 z )+ f (m2 , v2 x+u , v2 y , v2 z )=f (m1 , v '1 x+u , v '1 y , v '1 z )+ f (m2 , v '2 x+u , v '2 y , v '2 z ) ( 3)

Let us now expand the functions included in this equality into Taylor series 
in powers of u . Writing out only the linear terms and replacing the higher-order 
terms with dots, we obtain

f (m1 , v1)+u⋅( ∂ f
∂ v x

)
1

+...+ f (m2 , v2)+u⋅( ∂ f
∂ v x

)
2

+...=f (m1 , v '1)+u⋅( ∂ f
∂ v x

)
1

'

+...+ f (m2 , v '2)+u⋅( ∂ f
∂ v x

)
2

'

+.. .( 

4)

where ( ∂ f
∂ v x

)
k
and ( ∂ f

∂ v x
)
k

'

( k =1, 2) conventionally denote the derivative 
∂ f (m,v x , v y , v z )

∂ v x

after substituting into it the coordinates of the vectors instead of v x , v y , v z v 1 , v 2 

And v ' 1 , v ' 2 respectively. Having discarded equal (due to (1) ) the free terms on 
the right and left sides of equality (4) , dividing the result by u , tending u to zero 
and discarding the terms replaced by ellipses, in the limit we obtain

( ∂ f
∂ v x

)
1

+( ∂ f
∂ v x

)
2

=( ∂ f
∂ v x

)
1

'

+( ∂ f
∂ v x

)
2

'

( 5)

Equality (5) has exactly the same structure as equality (1), only instead of the 

sought measure of motion f in equality (5) there is a partial derivative 
∂ f
∂ v x

. But this 

means that if the function f satisfies equality (1) , then its partial derivative 
∂ f
∂ v x

also 

satisfies equality (1).
We arrived at this conclusion by assuming that the new inertial frame of 

reference moves along the x axis , i.e. that the vector u has coordinates ( u , 0, 0). 
Let us now assume that it moves relative to the old frame of reference along the y 
axis or along the z axis , i.e. that the vector u has coordinates 
(0, u , 0) or (0, 0, u ). Repeating verbatim the above reasoning, we establish that an 

equality of the type (1) also satisfy the partial derivatives 
∂ f
∂ v y

and 
∂ f
∂ v z

.
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We now introduce a vector q with coordinates 
∂ f
∂ v x

, 
∂ f
∂ v y

and 
∂ f
∂ v z

. Each of these 

partial derivatives is a function of the variables v x , v y , v z and m . Therefore, the 
vector q is a function of the variables v x , v y , v z and m , i.e. q is a vector function 
of m and of the vector argument v , satisfying equality (1). The function q (m,v )is 
additive and, being a vector, is invariant with respect to rotation of the reference 
frame. Thus, relying only on the Galilean principle of relativity, we have 
established an important fact: if there exists a scalar function f (m,v )satisfying 
conditions 1 o , 2 o and 3 o , then there also exists a vector function q satisfying 
these three conditions, and f and q are related by the relations

qx=
∂ f
∂ v x

, q y=
∂ f
∂ v y

, qz=
∂ f
∂ v z

( 6)

Now, based on Galileo's principle of relativity, we require that equality (5) (and 

similar equalities for 
∂ f
∂ v y

and 
∂ f
∂ v z

) be preserved under Galilean transformations. It is 

easy to see that repeating similar reasoning, but only based not on equality (1) but 

on equality (5) (and similar equalities for 
∂ f
∂ v y

and 
∂ f
∂ v z

), we will establish that an 

equality of type (1) must satisfy all second derivatives, i.e. six functions
∂2 f

∂ v x
2 ,

∂2 f

∂ v y
2 ,

∂2 f

∂ v z
2 ,

∂2 f
∂ v x ∂ v y

= ∂2 f
∂ v y ∂ v x

,
∂2 f

∂ v x ∂ v z

= ∂2 f
∂ v z ∂ v x

,
∂2 f

∂ v y ∂ v z

= ∂2 f
∂ v z ∂ v y

It was established above that equalities of type (1) can be written for ten 
functions, namely for

f ,
∂ f
∂ v x

,
∂ f
∂ v y

,
∂ f
∂ v z

,
∂2 f

∂ v x
2 ,

∂2 f

∂ v y
2 ,

∂2 f

∂ v z
2 ,

∂2 f
∂ v x ∂ v y

,
∂2 f

∂ v x ∂ v z

,
∂2 f

∂ v y ∂ v z
( 7)

According to the problem statement, it is assumed that the masses m 1 and m 
2 of two interacting points and their velocities before interaction are given v 1 And 
v 2 and that the assignment of these quantities completely determines six unknown 
quantities - the projections of the velocities of these same points after interaction
v1 x

' , v1 y
' , v1 z

' , v2 x
' , v2 y

' , v2 z
' . Thus, the ten equalities of type (1), discussed above, constitute 

a system of ten equations containing only six unknowns. This system of 
equations must have a solution (and a unique one at that). It is therefore clear that 
of the ten equations only six are independent, i.e. of the functions (7) only six are 
functionally independent.

The function f is one of the six independent functions, and whatever the other 
five functions in this six are, at least one second derivative will not be included in 
it - after all, among the ten functions (7) there are six second derivatives. Our 
further reasoning does not depend on which specific second derivative is the 

dependent function - let it be, for example, 
∂2 f

∂ v x ∂ v y
- and on which specific five 

derivatives are among the six independent ones - let it be, for example 

f ,
∂ f
∂ v x

,
∂ f
∂ v y

,
∂ f
∂ v z

,
∂2 f

∂ v x ∂ v z

,
∂2 f

∂ v y ∂ v z

, . This means that there is a function
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∂2 f
∂ v x ∂ v y

=F(f , ∂ f
∂ v x

,
∂ f
∂ v y

,
∂ f
∂ v z

,
∂2 f

∂ v x ∂ v z

,
∂2 f

∂ v y ∂ v z
).

Due to the additivity of all functions under consideration, F can only be a linear 
function with coefficients that do not depend on the sought velocities 11 ) , i.e.

∂2 f
∂ v x ∂ v y

=α1 f +α2
∂ f
∂ v x

+α3
∂ f
∂ v y

+α 4
∂ f
∂ v z

+α5
∂2 f

∂ v x ∂ v z

+α6
∂2 f

∂ v y ∂ v z

 ( 8)

Recalling now that, due to considerations related to the isotropy of space, the 
function f can depend only on the modulus v , i.e. has the form f (m,|v⃗|), we 
calculate the derivatives, where i , k = x , y , z ,

{
∂ f (m,|v⃗|)

∂ v i

=
∂ f (m,|v⃗|)

∂|v⃗|
⋅ ∂|v⃗|

∂ v i

= ∂ f
∂|v⃗|

⋅
v i

|v⃗|
∂2 f (m,|v⃗|)
∂ v i∂ vk

=
v i vk

|v⃗|2
⋅( ∂2 f

∂|v⃗|2
−

∂ f
∂|v⃗|

⋅ 1
|v⃗|); (i ≠ k )

∂2 f (m,|v⃗|)
∂ v i

2 = 1
|v⃗|

⋅ ∂ f
∂|v⃗|

+
v i
2

|v⃗|2
⋅( ∂2 f

∂|v⃗|2
−

∂ f
∂|v⃗|

⋅ 1
|v⃗|)

( 9)

Here it is taken into account that 
∂|v⃗|
∂ v i

=
∂√v x

2+v y
2+v z

2

∂ v i

=
v i

√v x
2+v y

2+v z
2
=

v i

|v⃗|. From 

equality (9) it follows that the left-hand side of equality (8) contains the factor v x v 
y ; at the same time, none of the terms on the right-hand side of equality (8) 
contains such a factor. Therefore, equating the coefficients of the terms containing 
v x v y on the left and right in equality (8) , we obtain

∂2 f

∂|v⃗|2
−
1
|v⃗|

⋅ ∂ f
∂|v⃗|

=0 ( 10)

(here comes the mass)
The solution to which is:

f =a (m )(v x
2+v y

2+v z
2)+b (m ) ( 11)

Thus, from requirements 1 o -3 o it follows that if there exists a scalar measure 
of motion, f (m,|v⃗|)then it has the form (11) and that then
there is a vector measure of motion q : qi=2a (m ) v i, where i = x , y , z or in vector 
notation

11 ) Indeed, from the previous reasoning it follows that

( ∂2 f
∂ v x ∂ v y

)
c

=F[ f ,( ∂ f
∂ v x

)
c

,( ∂ f
∂ v y

)
c

,( ∂ f
∂ v z

)
c

,( ∂2 f
∂ v x ∂ v z

)
c

,( ∂2 f
∂ v y ∂ v z

)
c]; the index c indicates that the 

functions are calculated for the system as a whole, for example: f c=f (m1 , v1)+ f (m2 , v2), 

( ∂ f
∂ v x

)
c

=
∂ f (m1 , v1)

∂ v1 x
+
∂ f (m2 , v2)

∂ v2 x
. Since is also represented by a similar sum, the function 

( ∂2 f
∂ v x ∂ v y

)
c
F must also have this property , and this is possible only under the 

condition that F is linear in all arguments and the coefficients αdo not depend on 
the velocities.
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q⃗=2a (m ) v⃗ ( 12)
In classical mechanics, f is normalized so that b ( m ) = 0 and a ( m ) = m /2 .

2. (Continued by Sha S.V.)

The number of possible functions is ten :

f ,
∂ f
∂ v x

,
∂ f
∂ v y

,
∂ f
∂ v z

,
∂2 f

∂ v x
2 ,

∂2 f

∂ v y
2 ,

∂2 f

∂ v z
2 ,

∂2 f
∂ v x ∂ v y

,
∂2 f

∂ v x ∂ v z

,
∂2 f

∂ v y ∂ v z
(7).

Number of variablesv1 x' , v1 y
' , v1 z

' , v2 x
' , v2 y

' , v2 z
'  six ,

and for equations of type (8)
∂2 f

∂ v x ∂ v y

=α1 f +α2
∂ f
∂ v x

+α3
∂ f
∂ v y

+α 4
∂ f
∂ v z

+α5
∂2 f

∂ v x ∂ v z

+α6
∂2 f

∂ v y ∂ v z

 three .

So, 10-6-3=1.
Therefore, we will try to find one more equation.

In searching for equations satisfying (8) , we equated terms with the same velocity 
components, for example, v x v y .
Now we note that in the third equation of system (9) there is a term with v i

2, 
summing over all i={x,y,z}, we reduce it to v2.
Thus we obtain the equation:

∑
i=x , y , z

∂2 f

∂ v i
2+α f =β ( 13)

(where α , βare constants). The constant βis unimportant, you can always replace it 
f with f +const, zeroing out β. Therefore, we will write 0 instead of β.
Substituting the values of the derivatives (9) in (13): 

∂2 f

∂|v⃗|2
+ 2
|v⃗|

⋅ ∂ f
∂|v⃗|

+α f =β ( 14)

∂2 f

∂|v⃗|2
+ 2
|v⃗|

⋅ ∂ f
∂|v⃗|

+α f =0 ( 15)

His solution:

f =C1⋅
exp (−√−α|v⃗|)

|v⃗|
+C2⋅

exp (√−α|v⃗|)
|v⃗|

( 16)

WhereC1 and C2are constants.
This is a new measure of motion that generates a new conservation law. Let's 
study it. To do this, let's look closely at equations (10) and (15) . In one case, you 
can remove the 2nd derivative, in the other, the 1st, and you can also play with the 
coefficient α.

Both Newton's laws and the new measure of motion follow from Galileo's 
principle of relativity. Newton's laws alone (and similar Theories of Relativity by 
Einstein) are an incomplete system of equations for Galileo's principle of 
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relativity, they lead to the disintegration of matter particles upon collision and do 
not preserve their material pointness. Only with Newton would matter be scattered 
throughout space. But Newton and the new measure of motion are already a 
complete system for Galileo's principle of relativity, and should ensure the 
existence of particles.

2.1 Langrangian
System of equations (10) and (15) of course, do not have common solutions. But if 
a particle tries to satisfy both of them, then it strives to choose the place where the 
values of the functions and their derivatives in these equations will differ the least. 
Ideally, it will choose the point in phase space where they coincide.

From a mathematical point of view (10) and (15) are not a system of independent 
equations. This is not a system at all. The problem is to find the final velocities, 
and their solution lies outside the solution domains (10) and (15). In equation (10) 
and (15) are obtained as functionally independent. Their solution domain is not 
the intersection of the solution domains of each individual one. To obtain the 
solution domain of the original problem, it is necessary to combine the solution 
domains (10) and (15). (See (7) and a paragraph of explanation further on.)

This can explain the subtraction and addition of equations. (10) and (15) in ch. 2 .

If areas (10) and (15) do not intersect. It is better to look for the points of their 
greatest convergence. (Or you can choose any you want.)

Finding the minimum difference between equations (10) and (15) substantiates the 
principle of the optimal path in variational analysis, from which follows the 
principle of least action of Lagrange with his Lagrangians. And that the 
Lagrangian is equal to the difference between the kinetic and potential energies.

Let us consider a set of material bodies. Their total measure of motion is 
represented by the sum of kinetic energies T kin=∑

i

f (|⃗v i|)from the equation (10). 
These bodies interact via particle fields (PF). In order to ignore PF, their action 
must be expressed via potential fields dependent on radius vectors. To do this, we 
introduce r⃗=v⃗* (average lifetime of PF) , and averager⃗ to the radius vectors 
between material bodies. Thus, we introduce a potential field U pot=∑

i

f (|r⃗ i|), where f 
is taken from equation (15) .

Value domains (10) and (15) do not intersect. In order to be able to work with 
these equations simultaneously, it is necessary to find the minimum difference T kin

and U poton some trajectory of movement of material bodies.
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That is, find the minimum ∫
tbeg

t end

(T kin−U pot )dt, where t is time. This is the Maupertuis-

Lagrange principle (least action).

Explanation of gauge invariance:

In case the potential energy Upot has two different minimum values, but they give 
the same contribution to the Lagrangian, then one potential can be represented 
plus the difference to the second, which will correspond to one second potential. 
This difference is expressed as another field, by which one can search for one's 
particles.

2.2 Canonical Gibbs distribution

Let's look for other laws using conserved functions.
Thermodynamic potentials do not take into account the kinetic energy of the entire 
object. That is, kinetic energy is removed from the total energy. Let's try to act 
similarly.

we subtract (10) from equation (15) , we get: 
∂ f
∂|v⃗|

⋅ 3
|v⃗|

+α f =0,

integrating it, we get:

f =C⋅exp(− α
6

⋅|v⃗|2) ( 17)
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, where C is a constant. Equation (17) closely resembles the statistical 
distribution (canonical Gibbs distribution) if α is inversely proportional to 
temperature.
Also formula (17) is a solution to equation (15) at |α|≪ 1.

When adding equations with different coefficients α, the average value of the new 
α is obtained. That is, the minimum α cannot decrease, and the maximum cannot 
increase. Which justifies the 2nd Law of Thermodynamics.

To explain the transition from equation (17) in the form of a dynamic law to
statistical distribution I quote from:
Landau L.D., Lifshitz E.M. - Theoretical Physics. Volume 05 of 10.
Statistical Physics. Part 1, 2002, 5th ed.
Page 23.

§ 3. Liouville's theorem
Let us return to further study of the properties of the statistical function
distribution. Let us assume that we observe for a very long time
a long period of time some subsystem. Let's divide this
a very long period of time (in the limit, infinite)
the number of identical small intervals separated by moments in time
t1, t2,... At each of these moments the subsystem under consideration
will be represented in its phase space by a point (let's call these points A1, A2,
A3...). The set of obtained points will be distributed in the phase
space with a density that is proportional in the limit in each given
place the value of the distribution function p(p,q), by its very meaning
the latter, as determining the probability of various states
subsystems.

Instead of considering points representing the states of one
subsystems at different moments of time t1,t2,..., can be formally
thus introduce into consideration simultaneously a very large (in the limit -
infinite) number of identically arranged
subsystems 1) located at some point in time (say, t = 0) in
states represented by points A1, A2,...

1) Such an imaginary set of identical systems is usually called
statistical ensemble.

So it is not necessary to consider statistical laws as functions
distributions - can also be dynamic.
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The sum of the exponents of v 2 is preserved , and no matter how v changes, the sum 
will be preserved. And this leads to the Gibbs distribution.

2.3 Wave equations (quantum mechanics)
Just as when obtaining the Hamiltonian, the Lagrangian is subtracted from the 
doubled kinetic energy, let's try to play with doubling.
we add double (10) to equation (15) , we get :

3
∂2 f

∂|v⃗|2
+α f =0 ( 18)

This is the equation of a simple oscillator. Integrating it, we get:

f =C1⋅sin(√ α
3
|v⃗|)+C2⋅cos(√ α

3
|v⃗|) ( 19)

Thus we obtained wave equations similar to those used in quantum mechanics .
Applying the Fourier series expansion to the coordinate (for example, x), we 
obtain:

f =C1⋅ sin (С3 v0 (x+C 4))+C2⋅cos (С3 v0 (x+C 4)) ( 20)

where v 0 characteristic value of the velocity, for example the period if f is 
periodic. Which certainly shows the wave properties.
Note that v 0 x is not a scalar product, but a multiplication of the modulus of v 0 
and x as coordinates. C 4 gives rise to the trembling of elementary particles and 
relativism, which were predicted by Schrödinger .
Let's drive C 4 into x . We get:

f =C1⋅sin (С3 v0 x )+C2⋅cos (С3 v0 x ) ( 21)

Remembering how we got it from (1) equation (5) , we can take into account 

(17) and consider that 
α
6

⋅|v⃗|2it can express kinetic energy, and therefore the 

Hamiltonian. Then, expanding in a Fourier series over time, and multiplying with 
the Fourier series over the coordinate, we obtain the wave equation:

C1e
C2 v0 r−C3H t+C4 ( 22)

what is the wave function of particles in quantum mechanics. C 1 , C 2 , C 3 , C 4 are 
constants.
expansion into a Fourier series in r and in t is made for reasons of coincidence of 
dimensions.

Taking partial derivatives in one case with respect to time, and in the other with 
respect to the coordinate, we obtain the Shroed Önger equation and an expression 
for the momentum operator as a partial derivative with respect to the coordinate. 
The expression for the momentum coincides with Quantum Mechanics only if the 
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Hamiltonian does not depend on the coordinate. Otherwise, there is also a 
derivative with respect to the coordinate of H t.
We get Shredder :

Ψ=C1e
C2 v0 r−C3H t+C4 ( 23)

And
∂Ψ
∂t

=−C3H Ψ ( 24)

For impulse:
C2 v0 r=C '2Pr ( 25)

 And
∂Ψ
∂r

=C '2PΨ −C3 t
∂ H
∂r

Ψ ( 26)

Here we consider the general case. Specifically for quantum mechanics we should 
use not just Ψ , but a complex square Ψ *⋅Ψ . I explain this using the torsion theory. 
There, the field particles move along a closed trajectory in the form of a torus. A 
closed motion can be created using another field, the particles of which fly away 
radially from the center. But such a field would quickly dissipate all the energy of 
the torsion particle. A way out of this situation is possible if we introduce an 
additional field, which is also a torsion field, but with some shift or be slightly 
asymmetric to the main field. This new field should interact with the main one, 
and vice versa. Then the energy of the torus particle would not evaporate. The 
general behavior of these fields was described as Ψ *⋅Ψ , where Ψ is the main field, 
and Ψ *is the new (asymmetric) one. This explanation is proposed in my work " 02. 
OTVS - General Theory of All Forces ":

In other words, each particle must have two torsion fields so that the particles of these 
fields do not fly away from the center to infinity and do not "evaporate" the particle. One field  
creates a centripetal force for the other. And vice versa. Since these fields do not coincide, it 
is necessary to introduce not a simple square of the field amplitudes, but a complex one. 
Complexity explains the phase shift of these fields in space and time. Which determines their 
distinguishability.

This explains why the wave function in quantum mechanics must be squared.
This suggests the need for 2 fields in the form of Electric and Magnetic.
Oh! Found where the second field is hidden!  

These are the outer turns (one field) and the inner ones in the core (another field). Now both 
the complex conjugacy is explained, and the calculation of macro-parameters: why, for 
example, the impulse is the product of the core field by the impulse operator and by the 
external field of the particle. Simply, the external field must be adjusted to the internal one. 
This is what determines the impulse operator in the middle of the brackets.
 
It is also proposed to describe quantum gravity through Ψ *2+Ψ 2:

- The mass of the body is determined by the interaction of the torus core and the outer 
turns.

- Gravitational mass is determined by the same thing, taking into account the asymmetry 
of attraction and repulsion.
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- For the closure of torsion fields, another such field is required, only with a shift. 
Therefore, in ordinary quantum mechanics, they take into account∫Ψ 1

*⋅ f̂ Ψ 2

And in quantum gravity, fields Ψ *interact Ψ to bend each other's trajectories, but these 
fields affect the interactions of torsion particles separately. That is, it would be necessary to 
apply

∫( f̂ 1*Ψ 1
*⋅ f̂ 2

*Ψ 2
*+ f̂ 1Ψ 1⋅ f̂ 2Ψ 2) ( 27)

. This can be confirmed by the Taylor series, in which an asymmetric term is followed by 
a symmetric one (and then an asymmetric one again, etc.).

One more remark. At the very beginning, when we calculated the Hamiltonian as 
the sum of twice the kinetic energy (10)  and Lagrangian (15) , then in fact 
potential energy was added to the doubled classical kinetic energy. That only 
potential energy was added can be explained through Einstein's Lagrangian 
(described in the next paragraph), but Einstein does not have kinetic energy.
Adding, or more precisely, multiplying by a term C1e

−C3H tis analogous to gauge 
invariance. In particular, therefore the Hamiltonian is more or less constant over 
time.

By the way, the Heisenberg uncertainty and the Fourier series are proved by the 
same algorithm. This confirms the approach to Quantum Mechanics through 
Fourier.

It is immediately clear that Schrödinger cannot live without Newton, and this 
demonstrates the incompatibility of quantum mechanics with the theories of 
relativity.

2.3.2 , The connection of the Fourier series in Schrödinger with 
the generation of the constancy of the speed of light.

In fact, when C 4 was dropped in equation (20)
f =C1⋅ sin (С3 v0 (x+C 4))+C2⋅cos (С3 v0 (x+C 4)) 
and similarly for H(t+C 5 ) C 5 was discarded this should have led to a shift in 
space and time, which in standard calculations for magnetic and electric fields 
leads to the constancy of the speed of light and to the concept of spin. This is how 
quantum mechanics needs to be improved. This also describes the trembling of 
elementary particles, predicted by Schrödinger .

2.4 Einstein's STR
From Galileo's principle of relativity, the limitation of the speed of light cannot be 
obtained. But nonlinearity can be added.
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For example, let us consider the case when the factor 
1
|v⃗|in the term 

∂ f
∂|v⃗|

⋅ 2
|v⃗|is 

conditionally constant, ≈
1

|⃗v0|, where v⃗0is conditionally constant .

This case can be justified by the fact that the particle consists of subparticles. 
We divide the time motion of these subparticles into intervals, and assuming that 
at the end of each interval the interaction is switched off, and at the beginning of 
the next one it is switched on, we obtain the case when f corresponds to the 
conditions of this article. We simplify the model to 2 particles moving with 
velocities v⃗0+u⃗and v⃗0−u⃗, where v⃗0is the velocity of the center of mass, and u⃗is the 
relative velocity.
(for brevity, we will not write the vector sign and the absolute value function, but 
v ≈ v0, where vis the variable )
Let's expand u(const) into a Taylor series up to the 2nd order :

f (v0)=f (v ±u )=f (v )± ∂ f (v )
∂ v

⋅u+
∂2 f (v )
∂ v2

⋅ u2

2
;

∂ f (v0)
∂ (v0)

=
∂ f (v ±u )
∂ (v ±u )

=
∂ f (v )
∂ v

±
∂2 f (v )
∂ v2

⋅u;

∂2 f (v0)
∂ (v0)

2 =
∂2 f (v ±u )
∂ (v ±u )2

=
∂2 f (v )
∂ v2

.

Substituting these Taylor series into equation (15) and summing them up, we 
obtain:
∂2 f (v0)
∂ v0

2 + 2
v0

⋅
∂ f (v0)
∂ v0

+α⋅ f (v0)=0

∂2 f (v )
∂ v2

⋅(1+ α
2

⋅u2)+ 2v0 ⋅
∂ f (v )
∂ v

+α⋅ f (v )=0.

Discarding the terms comparable and less than u2, we obtain:
∂2 f (v )
∂ v2

+ 2
v0

⋅ ∂ f (v )
∂ v

+α⋅ f (v )=0 ( 28)

.
The solution to which is:

f =const1⋅exp(+√1−α⋅ v0
2

v0
⋅ v)+const2⋅exp(− √1−α⋅ v0

2

v0
⋅ v) ( 29)

. Taking into account v ≈ v0, and substituting α= 1

c2
, we get
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f =const1⋅exp(+√1− v2

с2)+const2⋅exp(−√1− v2

с2) ( 30)

,
which is very close to Einstein's formulas of special relativity.

The same formulas are obtained when the constituent particles rotate at speeds 
much greater (and not just less) than the center of mass |u⃗|≫ |⃗v0|.

If ( 30) is used in constructing the Lagrangian, then, firstly, the exponent can be 
ignored, since it is a monotone and smooth function, and secondly, (30) is 
included as potential energy, recall: Lagrangian = kinetic energy minus potential. 
In this Lagrangian, kinetic energy is not taken into account, but only potential 
energy with a minus is taken into account. Because of this minus, it is necessary to 
look for not the minimum, but the maximum of the integral along the path of the 
particle. This is done in "Field Theory" (see Landau-Lifshitz, volume 2, "Field 
Theory").
In the section "Einstein's Special Relativity" the energy, possibly potential, is 
obtained, which differs from the famous E=mc2exponent. The exponent is easily 
converted into sines/cosines. If we take into account the explanations of 
Lagrangian in section 2.1, then the sines from can fall into the least action mc2. It is 
quite possible that at some angles the difference between kinetic and potential 
energy can be even smaller than without angles. Thus the famous Lagrangian 
correction for can appear sin (28o). 28overy close to 30o, and hence the confirmation 
of the arrangement of quarks in the form of a regular triangle, as in the article 
"Fields and Particles". There the proton is represented by a regular triangle of 
quarks.

Conditional constancy v0explains why STR is only applicable to coordinate 
transformations and is weak for dynamics.

Note that the calculations were performed with the interaction of subparticles 
disabled, and therefore the resulting formulas do not violate Galileo's principle of 
relativity.

The incompatibility of quantum mechanics (QM) and Einstein's special theory of 
relativity (STR) is justified as follows: the Lagrangian in QM contains only the 
kinetic term, and the entire STR is an expression of all matter through potential 
energy. So it turns out that since the Lagrangian = kinetic energy - potential 
energy, then since 
the Lagrangian of QM = only kinetic energy, and for me it is exp(momentum * 
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coordinate), the Hamiltonian is constant and can be ignored. 
And the Lagrangian of STR = - potential energy. That is, = -exp(mc 2 ).

And pure kinetic energy is incompatible with pure potential energy.

That QM is incompatible with STO.

The speed is limited by the speed of light only for complex objects. Which consist 
of something. Like a nucleus of protons and neutrons, like protons and neutrons of 
quarks, etc. 
But simple particles should easily overcome the speed of light. This can explain 
Hyperinflation, when the expansion of the Universe was going on at a huge speed. 
Much greater than the speed of light.

In quasars (black holes) time dilation is not observed in the brightness of flares at 
cosmological distances. This is explained by the fact that when a quasar absorbs 
another cosmic object, its particles disintegrate into single subparticles and STR 
does not work. But in supernovae, during flares, particles do not disintegrate into 
single subparticles, therefore time dilation is visible and STR works.

2.5 Justification of QED and QFT
( QED stands for Quantum Electrodynamics and QFT stands for Quantum Field 
Theory.)

To extend Quantum Mechanics to Einstein's STR, we must somehow substitute 
equation (30) into the Lagrangian. (Let's denote the right-hand side of this 
equation as E.) Note that at low velocities v, the exponent of E is close to 

1±√1− v2

с2
=1+const T kin, where T kinis the kinetic energy. But E is a description of 

potential energy, not kinetic energy, and we cannot obtain mass from it. 
Therefore, E is a Taylor series of T kinat m=0. We obtain a series of interacting 
virtual particles. Let's represent the total potential energy as E + U pot 

, , and T kin (at 
m # 0 ) = 0. In this case, in order for the particles to satisfy both E and U pot , we 
must take the minimum of E - U pot , since the solutions for E and U pot are 
different.

Then we get the Lagrangian L = E - U pot .

But E is a certain Taylor series of T kinat m=0. We obtain series of creation and 
annihilation of virtual particles. (We immediately note that these series converge, 
since they are generated by the exponentials in the equation (30)   and there is no 
need to suffer, as in QED and QFT.)
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Because in   (30) two exponents with arguments of different signs, then both 
particles and antiparticles are obtained ; and their birth and death both before and 
after the start of the interaction.

This is the basis for QED and QTP.

If you want to calculate the mass of your particle, then take the Lagrangian: 
L = T kin (at m#0) – ( E + U pot ), but do not forget to change the sign of E.

2.6 Yukawa potential of the strong interaction
If we multiply the lifetime of a pion by its speed, we get the distance r  interaction 
of nucleons. Its potential is obtained by replacing the velocity v on r in the first 
term of equation (16)

f =const ⋅ exp
(−√−α r )

r
( 31)

This is exactly in line with Yukawa's potential.

2.7 Graphs of equation (16)
at:
 a=1, f(0)=1, f'(0)=0

at: 
a= -1, g(0)=1, g'(0)=0
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Let's add these two graphs with coefficients proportional to the masses of the 
electron and proton: (g(v)+1836*f(v))/1837:

(this resembles the Higgs potential). If we take into account the Higgson lifetime, 
then the speed on the graph will be transformed into the radius of action. And no 
scalar fields (new ethers) are needed. Everything is determined by the internal 
structure of elementary particles. In this case, the proton and the electron. And 
from this it follows that there is no Higgson. This also happens. There are no 
particles in the thermodynamic distribution.
And since there is no Higgs boson, this function should not be potential energy 
from r, but kinetic energy from v. There should be a minimum in kinetic energy 
not only at v=0.

In short, I don't know how to explain it, it feels like the particle is there, but in 
reality it isn't. It's a joke particle.
Well, indeed, if Higgson were a particle, then time would be needed for its birth, 
action and decay. Kinetic processes would be discrete and jerky. The mass would 
jerk. And as a consequence, Galileo's principle of relativity would not be fulfilled, 
from which it all began.

Friends! 
A discovery has been made in calculations on quantum mechanics, confirming my 
method for obtaining the Higgs Field: https://nplus1.ru/news/2023/03/15/EDFT 

And from equation (16) it follows that at the zero of the velocity the zero of the 
function is lost, if it were strictly periodic. This can be interpreted as a loss of π in 

http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?action=dereferer;url=https://nplus1.ru/news/2023/03/15/EDFT
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phase. In the wave function this is interpreted as a spin of 1/2. And bosons are 
obtained in the form of derivatives, and their losses are already 2 π, and the spin is 
equal to 1.

On the top graph is a fermion, and on the bottom is a boson as its derivative:

Why fermions with spin ½ have to make 2 revolutions to completely return to 
their original state is shown in the figure. In one revolution, the central maximum 
turns into a minimum and, due to the phase shift, the maxima turn into minima, 
and the spin +1/2 into -1/2.

In fact, there should be an even 
number of half periods for half 
the total wave function. Which 
is what happens. Plus a half 
period on a loss of 0.

If we consider not 2, but 3 or more particles, then nothing significant in 3-
dimensional space is obtained. With 3 particles, we get 4 terms of the form (16) 
with 4 constants. When a larger number of particles collide, there will be even 
more such components, but their general form will be the same.

On the dimensionality of space. When equation (15) was obtained from (9) and 
(13), then in n- dimensional space we would obtain the equation:

∂2 f

∂|v⃗|2
+ n−1

|v⃗|
⋅ ∂ f

∂|v⃗|
+α f =0 ( 32)

And to obtain the Hamiltonian, as in the derivation of "2.3 Wave Equations", it 
would be necessary to subtract the Einstein Lagrangian from n-1 kinetic energy. 
And since n-1 is equal to 2 everywhere , the space is 3-dimensional. (True, the 
potential energy is a bit of a bummer, but it is also a bummer in STR.)

Also, if we take n not equal to 3, then Einstein's STR, Quantum Mechanics and the 
Gibbs distribution do not work at all.
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I don't remember who, but one of the wise ones said that all potential energy 
should be reduced to kinetic energy. And so it was reduced.

It seems that the space outside the universes is filled with some kind of matter, 
possibly ether. So the universes absorb this matter and process it through "Big 
Bangs", Collapses and Explosions. Maybe these are the Remnants of other 
universes, or maybe it has always been like this.

Conclusion: If everything comes from Galileo's Principle of Relativity, then why 
is it so important?

And it is important because Space is the same in all directions and at all speeds. It 
is also unlimited by anything. Therefore, Space is Emptiness. And, as a trifle, this 
proves that there is no ether.

On the other hand, they claim that to define Space, it is necessary to establish 
material reference points in it, but then it will be possible to establish whether one 
body moves relative to another or vice versa, and this contradicts Galileo's 
Principle of Relativity. And therefore, Space exists separately from matter. After 
all, it is always possible to determine whether a material point is attached to a 
point in Space. In the same way, with ether, it is possible to establish whether it 
moves or not. Therefore, refuting this, Galileo's Principle of Relativity sets the 
Principles of Space and Matter, and rejects ether.

Also, equation (16) can have an infinite value at zero v. This can explain, on the 
one hand, hyperinflation, when the expansion speed became enormous at the Big 
Bang; and on the other hand, the Heisenberg uncertainty principle in quantum 
mechanics, when a particle cannot be at rest (that is, when the momentum and 
coordinate are simultaneously determined). There is a third case, when, at zero 
speed, equation (16) can have a negative infinite value, then everything can stop 
and stick together into a point.

Let us consider the complete equation (14) 
∂2 f

∂|v⃗|2
+ 2
|v⃗|

⋅ ∂ f
∂|v⃗|

+α f =βat α=0. His solution : 

f =const1( 1|v⃗|+2 β|v⃗|)+const2 ( 33)

And this already resembles the potential of the gluon field. Here is the article:

http://nuclphys.sinp.msu.ru/students/quarks/index.html

http://nuclphys.sinp.msu.ru/students/quarks/index.html
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It is interesting that (33) is obtained from (14) when α=0, and α= 1

c2
, when deriving 

Einstein's STR. It is quite possible that the gluon field can propagate at a 
superluminal speed.

2.8 Rotation and isotropy of space
In fact, what is needed here is an understanding of time, and this does not exist 
even in mathematics yet.

2. 9 Generated Conservation Laws.
Equation (10) does not contain a function, and its derivatives generate new 

conservation laws:
∂2 f

∂|v⃗|2
−
1
|v⃗|

⋅ ∂ f
∂|v⃗|

=0

f – classical kinetic energy and its conservation;

∂ f
∂ v⃗

- classical impulse and its conservation;

∂2 f

∂ v⃗2
- classical mass and its preservation.

But in equation (14)
∂2 f

∂|v⃗|2
+ 2
|v⃗|

⋅ ∂ f
∂|v⃗|

+α f =β 

taking into account:
∂ f
∂ v x

= ∂ f
∂|v⃗|

⋅ d|v⃗|
d vX

= ∂ f
∂|v⃗|

⋅ v x 

Let's calculate the "pulses" of this equation:
∂ f
∂|v⃗|

⋅ v⃗=const1⋅ f ⋅(const2− 1
|v⃗|)⋅ v⃗ ( 34)

And so on. 
The function f , the derivative and the second derivative are interconnected via 
(14) . In addition, for the derivatives of the third and higher, there is a repetition of 
dependencies, only the number of terms and constants is doubled. Therefore, the 
generation of new conservation laws does not occur. 

3. Mathematics does not describe physics.

All this proves that mathematics only approximately describes physics. And there 
are no “Mathematical Principles of Physics”. 
Having created OTF, I came to the conclusion that mathematics cannot describe 
physics. Mathematics strives for the ideal, it is idealistic; and physics is dialectical 
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and materialistic. Physics contains a contradiction, the same thing as “the unity 
and struggle of opposites.” There is no such approach in mathematics yet. Physics 
includes not only a description of nature, but also the creation of a new nature in 
the future, and this cannot be predicted. In principle, mathematics contains 
everything that is in its axioms, no more, no less. And physics is designed to 
generate new things.
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