Логин:   Пароль:  

Соцсети






Автор:
Написал: Amro Дата: 25-Мар-2010
Ответ на вопрос о природе световых волн был получен на основании длинного ряда наблюдений над особенностями световых явлений. При этом, как обычно бывает при развитии наших научных воззрений, представление о природе света менялось по мере того, как накапливались новые сведения и данные.

Волновые представления о природе света развивались еще в XVII веке X. Гюйгенсом и поддерживались на протяжении XVIII века Л. Эйлером, М. В. Ломоносовым и В. Франклином. Однако в течение всего этого периода наиболее обоснованными оставались корпускулярные представления о свете, в соответствии с которыми свет уподоблялся потоку быстро летящих частичек (И. Ньютон). Лишь в начале XIX века трудами О. Френеля и Т. Юнга была надежно обоснована волновая природа света (см. гл. XIII и XIV). При этом волны эти уподоблялись упругим волнам, сходным до известной степени с волнами, обусловливающими акустические явления. Однако две важные особенности отличают световые волны от звуковых.

Во-первых, свет распространяется через пространство, откуда удален воздух или другая среда, тогда как звук в вакууме распространяться не может (см. § 33). Распространение света в вакууме можно наблюдать в электрических лампочках накаливания, из баллона которых откачан воздух*). Другим доказательством способности света распространяться в вакууме являются наблюдения света Солнца и звезд, отделенных от нас огромными пространствами, содержащими в единице объема еще меньше вещества, чем самые совершенные вакуумные приборы.

По современным данным в межзвездном пространстве приходится в среднем около одного атома на 1 см3, тогда как в наиболее тщательно откачанных вакуумных приборах заключено не менее 108 атомов или молекул в 1 см3.

Во-вторых, отличительной особенностью световых волн по сравнению с волнами звуковыми является огромная скорость их распространения. Астрономические наблюдения над затмениями спутников Юпитера, выполненные Рёмером (см. § 157), показали, что скорость распространения света в мировом пространстве близка к 300 000 км/с (3•108 м/с). Такова же практически и скорость света в воздухе, где звук распространяется со скоростью, примерно в миллион раз меньшей.

Огромная скорость распространения света выделяла оптические явления из всех других, известных в первой четверти XIX века. Примерно полвека спустя Дж. Максвелл установил, исходя из теоретических соображений, что с такой именно скоростью должно распространяться всякое электромагнитное возмущение. Через некоторое время Г. Герц на опыте осуществил электромагнитные волны, скорость распространения которых действительно оказалась равной скорости распространения света.

Дальнейшими исследованиями и в первую очередь опытами П. Н. Лебедева, получившего самые короткие потому времени электромагнитные волны (6 мм), было установлено, что все основные свойства электромагнитных волн совпадают со свойствами волн световых. Все эти важные факты привели к мысли, что световые волны представляют собой электромагнитные волны, отличающиеся от волн, обычно применяемых в радиотехнике, своей очень малой длиной (меньше микрометра) (см. § 58).

Электромагнитной природой световых волн объясняется испускание электронов освещенными металлами, т. е. так называемый фотоэлектрический эффект, о котором мы упоминали в томе II, § 9 и с которым подробнее познакомимся в гл. XXI. Существует и ряд других явлений, обнаруживающих связь между светом и электромагнитными процессами. Опираясь на всю совокупность экспериментальных и теоретических данных, мы можем считать установленным, что световые волны представляют собой электромагнитные волны. Светящиеся тела (например, Солнце) испускают электромагнитные (первичные) волны. Попадая на какое-нибудь тело, такая первичная волна вызывает вынужденные колебания его электронов, которые становятся источниками вт�
71a
�ричных электромагнитных волн. Все многообразие световых явлений, все видимые нами окраски и очертания предметов представляют собой суперпозицию (наложение) первичных и вторичных волн. Как уже указывалось раньше, многие черты волновых явлений оказываются сходными для волновых процессов самой разнообразной природы. Поэтому и в дальнейшем, знакомясь с основными законами и понятиями оптики, мы воспользуемся сведениями о волнах, изложенными в гл. IV, V и VI. Накопление новых экспериментальных данных привело в XX веке к заключению, что свет наряду с волновыми обладает и корпускулярными свойствами (кванты света или фотоны, § 184). В настоящее время квантовая теория объединяет волновые и корпускулярные представления о свете в единое целое, так же как она объединяет волновые и корпускулярные представления об электронах, атомах и других частицах (см. §210).





Комментарии: (0) Рейтинг:
Пока комментариев нет
2006-2015г. © Научно-Образовательный портал "Вся Физика"
Копирование материалов с данного сайта разрешено, при условии наличия ссылки на ресурс "Вся Физика"
Страница создана за 0.048 секунды
  • albatros-med

    Гороскоп на 2009 год

    albatros-med.ru